Alexander Hillert Methods in empirical time portfolios

### Leibniz Institute for Financial Research SAFE Research Data Center

# Methods in empirical asset pricing: calendar-



#### Introduction 1.

- Implementation of calendar-time portfolios 2.
- 3. Summary



#### Introduction (1)

# Calendar-time portfolios: main idea

- Method to implement investment strategies.
- At end of formation period:
  - Assign stocks to portfolios based on a stock characteristic. Ο
  - Buy stocks in the long portfolio. Ο
  - Short stocks in the short portfolio. Ο
  - $\rightarrow$  self-financing investment strategy.
- Keep positions during holding period.
- At end of holding period:
  - Sell stocks in the long portfolio. Ο
  - Buy back shares of the short portfolio.
  - $\rightarrow$  Return difference of the long and short portfolio is the profit.



#### Introduction (2)

# Calendar-time portfolios: main idea – continued

- holding positions, and closing positions is repeated.  $\rightarrow$  calendar-time approach.
- Strategy is implementable if
  - portfolio assignment based on time t information. Ο
  - holding period start after time t. Ο
- Example:
  - Ο
  - Ο
  - $\rightarrow$  strategy implementable in real time.

At each point in time, the process of portfolio assignment, initiating positions,

Sort stocks at the end of month t based on their return from month t-12 to t-1. Hold the long (winner stocks) and short (loser stocks) portfolio in month t+1.



#### Introduction (3)

### **Calendar-time vs. event-time analysis**

- Calendar-time: procedure performed at each point in calendar time.
  - E.g., Jan 2000, Feb 2000, ..., Dec 2000, Jan 2001, ..., Dec 2023. Ο
  - Time periods are weighted equally. Ο
  - Average strategy return =  $\frac{1}{\tau} \cdot \sum_{t=first YYYMM}^{last YYYMM} return_t$ 0
  - At each point in time, you invest same amount of money. Ο
- Event-time: time is defined relative to the event analyzed.
  - Ο months after M&A announcement.
  - Events are weighted equally. Ο
  - Average strategy return =  $\frac{1}{N} \cdot \sum_{i=first \ event}^{last \ event} return_i$ Ο
  - At each event, you invest same amount of money. Ο

E.g., one month before M&A announcement, month of M&A announcement, five





#### Introduction 1.

- Implementation of calendar-time portfolios 2.
- 3. Summary



Implementation of calendar-time portfolios (1)

### Investment strategy setup

- Define the strategy's portfolio formation frequency. In empirical asset pricing research often monthly. Ο
  - More frequent formation  $\rightarrow$  more trading  $\rightarrow$  more transaction costs. Ο
- Select characteristic/trading signal:
  - Point in time variables (end of formation period), e.g., most recent market cap. Ο
  - Variables measured over longer periods (during formation period), e.g., past six-month Ο return.
- Select holding period:
  - Often one-month period. Ο
  - Longer periods with potentially overlapping portfolios also possible.

 $\rightarrow$  for details on overlapping portfolios, see <u>Jegadeesh and Titman (1993)</u>.





Implementation of calendar-time portfolios (2)

### **Portfolio allocation process**

- Portfolios are typically formed using percentiles. 5 quintile portfolios: each contains 20% of the available stocks. Ο 10 decile portfolios: each contains 10% of the available stocks. Ο
- At the end of each formation period, determine the relevant
  - percentiles/breakpoints of the characteristic.
- Example: determine the 20%, 40%, 60%, and 80% percentile of firms' market cap to form size-based quintile portfolios.
- Assign stocks based on the break points to the portfolios.





Implementation of calendar-time portfolios (3)

# **Portfolio allocation process – continued**

- of December 2023.
- Figure shows:  $\bullet$ 
  - Break points. Ο
  - 2 exemplary stocks (a small one and Ο a large one) for each size portfolio.

Source: own computations based on monthly CRSP file.

Example of stock assignment: quintile portfolios based on market cap at the end

| Portfolio                         | Stocks in the portfolio |                      |  |  |
|-----------------------------------|-------------------------|----------------------|--|--|
| 1 (low)                           | Blue Star Foods Corp    | Milestone Scientific |  |  |
|                                   | \$0.002 bn.             | \$0.052 bn.          |  |  |
| 20th size percentile: \$0.053 bn. |                         |                      |  |  |
| 2                                 | Fluent Inc              | Astria Therapeutics  |  |  |
|                                   | <b>\$</b> 0.054 bn.     | \$0.279 bn.          |  |  |
| 40th size percentile: \$0.285 bn. |                         |                      |  |  |
| 3                                 | John Wiley & Sons Inc   | Guess Inc            |  |  |
|                                   | \$0.290 bn.             | \$1.238 bn.          |  |  |
| 60th size percentile: \$1.245 bn. |                         |                      |  |  |
| 4                                 | Veritex Holdings Inc    | Harley Davidson In   |  |  |
|                                   | <b>\$1.264</b> bn.      | \$5.131 bn.          |  |  |
| 80th size percentile: \$5.318 bn. |                         |                      |  |  |
| 5 (high)                          | Macy's Inc              | Apple Inc            |  |  |
|                                   | \$5.514 bn.             | \$2994.371 bn.       |  |  |





Implementation of calendar-time portfolios (4)

# Holding period portfolio return

- Compute the portfolios' returns during the holding period.
- period return across all stocks in the portfolio.

| 2000/02    |        | 2000/03    |        |     |
|------------|--------|------------|--------|-----|
| Stocks in  | Stock  | Stocks in  | Stock  |     |
| quintile 1 | return | quintile 1 | return | ••• |
| A Inc      | 0.03   | A Inc      | -0.13  |     |
| B Inc      | -0.09  | C Inc      | 0.02   |     |
| E Inc      | 0.05   | F Inc      | -0.15  |     |
| •••        |        |            |        |     |
| X Inc      | 0.17   | Z Inc      | 0.04   |     |
|            |        |            |        |     |
| Average    | 0.04   |            | -0.055 |     |

Leibniz Institute for Financial Research SAFE, Research Data Center, Alexander Hillert 9. Oktober 2024



For each calendar month and each portfolio, compute the average holding



Repeat procedure for quintiles 2 to 5.



Implementation of calendar-time portfolios (5)

# Value-weighted vs. equally weighted portfolios

- Equally weighted portfolios:
  - Compute the simple average of the returns of all stocks in the portfolio. Ο Gives the same weight to each stock, i.e., 1/N investment strategy. Ο Requires frequent trading to rebalance portfolios. Ο
- Value-weighted portfolios:
  - Weight stocks' returns by the market capitalization from the beginning of the Ο formation period.
  - Gives larger firms more weight. Ο
  - Easier to implement in the real-world. Ο
  - Market indexes are usually value weighted. Ο





Implementation of calendar-time portfolios (6)

# Value-weighted portfolios - Example

Compute value-weighted portfolio return of this three-stock portfolio. 

|        | MCap end of | Return    | MCap end of |
|--------|-------------|-----------|-------------|
| Stock  | month t     | month t+1 | month t+1   |
| A Inc. | 100         | 0.20      | 120         |
| B Inc. | 50          | 0.10      | 55          |
| C Inc. | 10          | 0.00      | 10          |

- $r_{value-weighted} = r_{value-weighted}$ 100 + 50 + 10
- 120.0.2 + 55.0.1 + 10.0.0*r<sub>value-weighted</sub>* 120 + 55 + 10



<u>Correct approach</u> using market cap from the <u>beginning of holding period</u>:  $\frac{100 \cdot 0.2 + 50 \cdot 0.1 + 10 \cdot 0.0}{100 \cdot 0.2 + 50 \cdot 0.1 + 10 \cdot 0.0} = 0.1563 = 15.63\%$ 

Incorrect approach using market cap from the end of the holding period: 0.1595 = 15.95%



Implementation of calendar-time portfolios (7)

# **Computing average (risk-adjusted) returns**

- Next, compute time-series average of portfolio returns.

| Portfolio | 2000/02 | 2000/03               | ••• | 2023/11 |
|-----------|---------|-----------------------|-----|---------|
| 1         | 0.04    | - <mark>0.05</mark> 5 | ••• | 0.045   |
| 2         | 0.03    | 0.02                  | ••• | -0.04   |
| •••       | •••     | •••                   | ••• |         |
| 5         | 0.01    | 0.02                  | ••• | 0.04    |

- excess returns (and further risk factors).

 $r_{portfolio,t} - r_{f,t} = \alpha - \alpha$  $\alpha$  is the risk-adjusted return.

After calculating the monthly portfolio returns, you have time-series data.



Then, test whether high-minus-low return is significantly different from zero.

To obtain risk-adjusted returns, regress the portfolio (excess) returns on market

$$+ \beta \cdot (r_{market,t} - r_{f,t}) + \varepsilon_t$$





- Introduction 1.
- 2. Implementation of calendar-time portfolios
- 3. Summary



#### Conclusion

### Calendar-time portfolios

- Standard method in empirical asset pricing.
- Formation period: assign stocks to portfolios.
- Holding period: buy (sell) stocks in the long (short) portfolio.
- Procedure performed at each point in time.
- Compute portfolio return by taking two averages:
  - 1. For each portfolio and point in time: cross-sectional average across all stocks in the portfolio.
  - 2. For each portfolio: take the time-series average of the portfolio returns (i.e., of the cross-sectional averages).
- Portfolio returns can be risk-adjusted in a time-series regression using your preferred asset pricing model.





Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, 48(1), 65-91.



### Thank you very much for watching!

### Questions and feedback are very welcome!

Contact us at <u>datacenter@safe-frankfurt.de</u>.

9. Oktober 2024 Leibniz Institute for Financial Research SAFE, Research Data Center, Alexander Hillert

