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R is a programming language often used for data analysis. In this tutorial, we will use it and
RStudio to conduct time series analysis. RStudio is a user interface which makes working with
R much more convenient. This tutorial is intended to be run as a RMarkdown file in RStudio,
which allows you to execute the code yourself. To run it, download the RMarkdown version
here and open it in a recent version of RStudio.
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1 Contact

If you encounter any difficulties or just want general information, do not hesitate to contact us.
SAFE Research Datacenter: datacenter@safe-frankfurt.de

More information about the SAFE Research Datacenter and further guides can be found here.

2 Prerequisite

R can be downloaded herel
We'll also use RStudio. You can get it here.

3 Definition of a time series

A time series is a dataset in which one row contains a measurement value and another one
contains the point in time when it was measured. Yearly, monthly or daily measurements are
common, but every unit of time could be used.

4 Loading a time series into R

The tsibbledata package contains a time series analysis on production we will analyse. We can
make it visible in the environment (upper right panel) by giving it a name:

australian_production = aus_production

We can look at it in the panel now (by clicking on its name) or use R to show the first rows of
the table:

head (australian_production)

## # A tsibble: 6 x 7 [1Q]
##  (Quarter Beer Tobacco Bricks Cement Electricity  Gas

#i#t <qtr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1956 Q1 284 5225 189 465 3923 5
## 2 1956 Q2 213 5178 204 532 4436 6
## 3 1956 Q3 227 5297 208 561 4806 7
## 4 1956 Q4 308 5681 197 570 4418 6
## 5 1957 Q1 262 5577 187 529 4339 5
## 6 1957 Q2 228 5651 214 604 4811 7

As we see, this is a table with 7 variables: A time variable (Quarter) and 6 different goods
whose production values are measured.

In R, time series are stored as tsibble. This is a special type of data frame. You can verify this
is a tsibble by making sure it has the class ‘tbl_ts’.

class (australian_production)

## [1] "tbl_ts" "tbl_df" "tbl" "data.frame"
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5 Turning a dataset into a tsibble:

You can turn a dataset into a time series. To do that, you need to specify an index. The index
is the column in which you find the time period. Look at this very small dataset with two

columns and two rows:

testdata = data.frame(time = c(1,2), value = c(30, 40))
testdata
class (testdata)

#i time value
## 1 1 30
## 2 2 40

## [1] "data.frame"

So far, it is a simple dataframe. But its column ‘time’ can be used as index to turn it into a
time series:

teststibble = as_tsibble(testdata, index = time)
class(teststibble)

## [1] "tbl_ts" "tbl_df" "tbl" "data.frame"

6 Visualizing time series

We will look more closely into the data of australian production now. To get an overview over
the data, visualizing it is very helpful.

autoplot (australian_production)

## Plot variable not specified, automatically selected ‘.vars = Beer‘
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The autoplot-function automatically displays the time on the x-axis and the first other numeric
variable on the y-axis. The first variable in this dataset is beer, so it is depicted above.

If we want to look at another variable, we have to specify it. Let’s take a look at the production
of natural gas:

autoplot (australian_production, .vars = Gas)
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As we can see, the natural gas production was initially at a relatively low level and started
to raise around 1970. It has always fluctuated, but as production increased, the fluctuations
became stronger.

7 A second example: Stock prices

Other time series are more difficult to interpret directly. Stock prices, for example, are very
volatile. Data on the apple stock can be loaded with this code:
apple_stock = gafa_stock %>/

# Filter by stock and year

filter (Symbol == "AAPL", year(Date) == 2015) %>%

# Select the variables we are interested in

select (Symbol, Date, Close)%>%

mutate (day = row_number()) %>% # Re-index based on trading days

update_tsibble(index = day, regular = TRUE)

This code also creates a new variable, ‘day’, which simply assigns a number to each trading
day. This is necessary because the stocks in this dataset are not traded on weekends, but a
time series is not allowed to contain such gaps.

We can take a look at the developement of the apple stock in the year 2015 with the following
code:

# Plot the apple stock value:
autoplot (apple_stock, .vars = Close)
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8 The ARIMA model

To analyse time series, the ARIMA model is widely used. It contains of several parts which
we’ll look at piece by piece.

Consider a simple regression formula:

y=x*xf[+e€

Such a formula models the relationship between an explanatory variable x and an explained
variable y. It predicts y based on the values of x and 5. gy =z % 3

A common way to analyse a time series is to use a variant of this: An autoregressive model (AR
model). This is the ‘AR’ in ARIMA. An autoregressive model uses past values of the y-variable
as explanatory variables. Like in ordinary linear regression, there is an error ¢, which can not
be predicted, but will be 0 on average. The simplest form is: y; = y;—1 * 0 + €

This model can be used for forecasting. If t is a future time period and t-1 is the current time
period, then the prediction for the future is: ¢, = 4,1 * 0

Like the ordinary linear regression model, it can easily be expanded. For example, more past
time periods can be added: 7; = ;1 % 81 + y4_2 * Po

Future error values can not be observed, but past error values are known and can be included:
Ye = Yp—1 % B1 + Y2 * Bo + pr€&—1 + paci_o

This model with the inclusion of past errors is called ‘autoregressive moving average’ (ARMA).
It works very well for stationary time series (stationary time series have a constant mean and
variance). But the gas data is obviously not stationary: Its mean and its variance both increase
over time.

The apple stock price data also is not looking stationary. One can test this formally with the
Kwiatkowski-Phillips-Schmidt-Shin-test. If it gives a value of 0.01, the data is not stationary.
If it gives a value of 0.1, the data is most likely stationary. In R, it can be used like this:

apple_stock %>%
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features (Close, unitroot_kpss)

## # A tibble: 1 x 3

##  Symbol kpss_stat kpss_pvalue
## <chr> <dbl> <dbl>
## 1 AAPL 1.47 0.01

As can be seen, the apple stock data is most likely not stationary. When the data is not
stationary, it can be differentiated. A dataset is differentiated by substracting the value of the
previous time period from each value.

# Differentiate the data
apple_stock = apple_stock’%>), mutate(diff_close = difference(Close))

3 head (apple_stock)

S LI S O

## # A tsibble: 6 x 5 [1]

## # Key: Symbol [1]

##  Symbol Date Close day diff_close
## <chr> <date> <dbl> <int> <dbl>
## 1 AAPL  2015-01-02 109. 1 NA

## 2 AAPL  2015-01-05 106. 2 -3.08
## 3 AAPL  2015-01-06 106. 3 0.0100
## 4 AAPL  2015-01-07 108. 4 1.49
## 5 AAPL  2015-01-08 112. 5 4.14
## 6 AAPL  2015-01-09 112. 6 0.120

If a time series is differentiated before it is modeled by an ARMA model, the time series is called
‘Integrated’ (since Integration is the opposite of Differentiation). The model for the integrated
time series then is called ‘ARIMA’, where the ‘I’ stands for ‘Integrated’.

In the next step, we will create an ARIMA model for apple stock prices and use it to predict
the future values of the stock.

9 Create an ARIMA model and predict stock prices:

The function ‘ARIMA’ can be used to pick an ARIMA model for a specific time series. It uses
the kpss test to test if the data has to be differentiated. It also checks if past values or past
errors can help predict future values.

Since we only used data from 2015 so far, we can create a forecast for January 2016 and compare
it to the real values of the apple stock in this month. This code loads the apple stock data from
January 2016.

# Get the values of the apple stock for January 2016
apple_jan_2016 = gafa_stock %>%
filter (yearmonth (Date) == yearmonth("2016 Jan"), Symbol == "AAPL")Y%>%
# Select the variables we are interested in
select (Symbol, Date, Close)%>%
mutate (day = row_number () +252) ¥%>% # Re-index based on trading days
update_tsibble(index = day, regular = TRUE)%>) mutate(diff_close =
difference(Close)) # Differentiate for january



Creating a forecast in R is composed of three steps: First, a model is created. We use an
ARIMA model, but there are many different types of models available.
Second, based on the model, a forecast is created. We add the data from january 2016 as new
data so the model predicts values for January.
The third step is to plot the forecast. Again, we can use the autoplot function which automati-
cally adds the forecasted values. The function ‘autolayer’ adds the real data from january 2016
in a grey color for comparison.

# Fit an ARIMA model for the apple stock:

apple_fit = apple_stock %>%
model (Arima = ARIMA(Close))

5 # Create the forecast

; apple_fc = apple_fit %>%
7 forecast(new_data = apple_jan_2016)

# Plot the forecast
apple_=fc %>%
autoplot (apple_stock, level = NULL) +

autolayer (apple_jan_2016, Close, colour = "grey")
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To learn more about the ARIMA model which was used to create this forecast, we can simply
type the name of the fitted model.

apple_fit

## # A mable: 1 x 2

## # Key: Symbol [1]
##  Symbol Arima
##  <chr> <model>

## 1 AAPL  <ARIMA(0,1,0)>



This output is interpreted as follows: The model fitted by the algorithm has no AR component,
is integrated once, and has no MA component. In other words, the algorithm differentiated the
data, like the kpss test we performed above suggested we should. The model does not include
any past values or past errors (the AR and MA component are both zero). The algorithm is
not guaranteed to be accurate, and you can also create a model by hand, but for stock market
data, it is a common result that past values don’t tell much about future values.
To see why this is the case. we can take a look at the differentiated data. Instead of the
absolute value of the apple stock, it represents the change from day to day. So we can see if
the value increased or decreased compared to the day before.
Again, we have the three steps to create a forecast: Fit the model, create the forecast and plot
it and the real January data.
# Fit the model

apple_fit = apple_stock %>%

model (Arima = ARIMA(diff_close) )
# Create the forecast
apple_fc = apple_£fit %>%

forecast (new_data = apple_jan_2016)
# Plot the forecast
apple_fc %>%

autoplot (apple_stock, level = NULL) +

autolayer (apple_jan_2016, diff_close, colour = "grey")

## Warning: Removed 1 row containing missing values or values outside the scale range
## (‘geom_line() ).

## Removed 1 row containing missing values or values outside the scale range

## (‘geom_line() ).
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As we can see, the model predicted the value of the apple stock to remain constant. Above,



we see the change in value, and the predicted change in value is 0. To see why the model gives
this prediction, we can again look at the components of the model.

apple_fit

## # A mable: 1 x 2

## # Key: Symbol [1]
##  Symbol Arima
##  <chr> <model>

## 1 AAPL  <ARIMA(0,0,0)>

This special ARIMA model is called ‘White Noise’. Expressed as a formula: y; = ¢; Since the
error term is 0 on average, the model predicts no change in the value of the apple stock. Of
course, as we can see from the real January data, the value changed a lot. But the algorithm
detected no predictable pattern in these changes. So even though the forecast is not very
accurate, it is as accurate as it can be with this type of model. Next, we will look at how this
uncertainty can be mesured and visualized.

10 Showing confidence intervals

Unless the time series is perfectly predictable, forecasts are not 100% accurate. Probably
even more important than the future value that the model considers to be most likely is the
confidence interval. The future value is likely to be higher or lower than the model predicts, but
it is unlikely to be outside of the confidence interval.

The confidence interval can be computed for different probabilities. By default, it is computed
in R for 80% and 95%. With 80% probability, a future value will be in the 80%-interval, and
with 95%, it will be in the 95%-interval. The confidence interval is automatically shown unless
you add ‘level = NULL’ in the autoplot function.

# Fit the model
apple_fit = apple_stock %>
model (Arima = ARIMA(diff_close) )
# Create the forecast
apple_fc = apple_fit %>%
forecast (new_data = apple_jan_2016)
# Plot the forecast
apple_fc %>%
autoplot (apple_stock) +
autolayer (apple_jan_2016, diff_close, colour = '"grey")

## Warning: Removed 1 row containing missing values or values outside the scale range

## (‘geom_line() ).
## Removed 1 row containing missing values or values outside the scale range
## (‘geom_line() ‘).

10
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The confidence interval is constructed with the following insight: Keep in mind the model
behind this forecast looks like this: 1y, = ¢

We know that the model will not be accurate because it contains this error term. But we know
the error term will have the value of 0 on average. Likewise, it has a standard deviation that
can be calculated from the past data. Individual values may be above or below the confidence
interval, but most values are within the calculated area. The random error term can give
values very different from the mean, but the average size of the deviation from the mean can
be calculated very well. In that sense, the prediction is fairly accurate.

We can also look at the confidence intervals for the value of the Apple stock:

# Fit an ARIMA model for the apple stock:
apple_fit = apple_stock %>%
model (Arima = ARIMA(Close))

# Create the forecast
apple_fc = apple_£fit %>% # You can tell how far to the future the
forecast should go with ’new_data’ or ’h’
forecast (new_data = apple_jan_2016)
# forecast(h = 30)

# Plot the forecast
apple_fc %>%
autoplot (apple_stock) +
autolayer (apple_jan_2016, Close, colour = "grey")

11
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This is typical for stocks: They often follow a random walk. A random walk is a process where
the errors sum up over time. The confidence interval is small in the first forecasted period,
but increases quickly because the standard error grows. In the case of the apple stock, the real
value is lower than the predicted value, but it is still within the 95% confidence interval.

11 An ARIMA model for the Australian gas production

As we’ve seen, ARIMA models can unfortunately not create very precise forecasts for the apple
stock. Now, we will see that they are much more precise for the Australian gas production.
There are different ways to define for how far in the future we want to create a forecast. So
far, we simply created one to match the January data we wanted to compare our forecast to.
Now, instead, we pass the parameter h to tell the program how far in the future the forecast is
supposed to go. h is always in the same unit as the time variable of the data, so since we have
data for every Quarter, ‘h = 10’ creates a prediction for the next 10 Quarters.
# Fit the model
gas_production_fit = australian_production %>%
model (Arima = ARIMA (Gas) )
# Create the forecast
gas_production_fc = gas_production_£fit %>%
forecast(h = 10)
# Plot the forecast
gas_production_fc %>%
autoplot (australian_production)

12
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The forecast using an ARIMA model now looks very different. This model is looking much more
precise. Its confidence intervals are smaller, and its prediction shows the same fluctuations like
the past years.

As we’ve seen, the Australian gas production data contains more regular patterns than the apple
stock market data. These patterns are picked up by the model, so the prediction no longer
is simply a mean value for all future periods. Instead, the model predicts that the seasonal
pattern will continue in the future. There is still an error term in the model, so the prediction
may not be 100% accurate. But the confidence intervals are a lot smaller than previously.
This model also is much more complex than the previous ones. Looking at it, we get the
following information:

gas_production_fit

## # A mable: 1 x 1

## Arima
## <model>
## 1 <ARIMA(0,0,3)(0,1,0)[4] w/ drift>

Let’s move through this information piece by piece:

1. The model is an ARIMA model, like before. The ARIMA part gives three past error
values that the model considers. It does not use any gas production values from previous
years, and is not integrated.

2. It is a seasonal model. The data is given for each Quarter, so there are four seasons in
the model. The number of seasons is given in the angular brackets. The brackets to the
left of it give information about the seasonal ARIMA. They follow the same convention
like the standard ARIMA: First are the AR coefficients (0 here), then if the data was

13



differentiated (yes, once), finally the MA coefficient (0 again). The difference between the
seasonal and non-seasonal ARIMA is the reference. Previously, when we differentiated
the model, we subtracted the value of yesterday from the value of today. But since the gas
production data is quarterly, ‘ordinary’ differentiation would mean to subtract a value
measured in winter from a value measured in spring. Instead, seasonal differentiation
subtracts the value in the spring of one year from the value in the spring of the next year.

3. Finally, this model contains a drift. That means a constant is added in each period. We
can see the value of the constant and the coefficients using the report command:

report (gas_production_fit)

## Series: Gas
## Model: ARIMA(0,0,3)(0,1,0)[4] w/ drift

##

## Coefficients:

# mal ma2 ma3 constant
## 0.7684 0.5258 0.6811 4.0231
## s.e. 0.0492 0.0712 0.0551 0.8661
##

## sigma”2 estimated as 18.7: 1log likelihood=-616.36
## AIC=1242.73  AICc=1243.02 BIC=1259.56

As we can see, the model assumes that the gas production will raise by 4.0231 petajoules each
time period on average, so more than 16 petajoules a year. The influence of previous errors
(the ‘ma’ coefficients) is positive, so if the production was unusually low or high in a quarter,
it can be expected to remain unusually low or high for the next three quarters.

12 Forecasting using other explanatory variables

So far, we've only done forecasting based on the data of a single variable. But it is possible to
include more variables into the model. However, this has to be handeled carefully. For example,
assume we want to create a forecast of electricity production in Australia. We suspect that gas
production has an influence (since gas can be used to create electricity), so we want to include
it as explanatory variable.

Then, we require a prediction for the gas production first. The forecast of the electricity will
be conditional on the assumption that the gas production will develop in a certain way. The
prediction of the ARIMA model for the gas production appeared very precise, so we will assume
that the gas production will develop like anticipated by the forecast. We define the future data
for the prediction of the next 10 quarters as the mean predicted by the forecast:

future_gas_production = new_data(australian_production, 10) %>%
mutate (Gas = gas_production_fc$.mean)

The rest of the process is largely the same we know already. First, we fit a model to predict
electricity. We now explicitly define Gas production as explanatory variable.

electricity_fit = australian_production %>%
model (ARIMA (Electricity ~ Gas))

We can take a look at the model:

report (electricity_£fit)

14



## Series: Electricity
## Model: LM w/ ARIMA(2,0,0)(1,1,2)[4] errors

##

## Coefficients:

## arl ar2 sarl smal sma2 Gas 1intercept
#it 0.5064 0.2389 0.8842 -1.6408 0.7204 30.7802 847.6066
## s.e. 0.0687 0.0701 0.0891 0.1094 0.0828 10.6951  125.6433
##

## sigma"2 estimated as 498454: log likelihood=-1705.88
## AIC=3427.76  AICc=3428.46 BIC=3454.69

As we see, this is a Linear Model (LM). Gas production is estimated to have positive influence
on electricity production. The model also contains ARIMA and Seasonal ARIMA components
to predict the future development of the electricity production.
To create and plot the forecast, we give the prediction of the future gas production as new
data. Then, we plot the forecast.

1 # Create the forecast

2> electricity_fc = electricity_fit %>%

3 forecast (new_data = future_gas_production)

+ # Plot the forecast

5 electricity_fc %>%
6 autoplot (australian_production)
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Electricity appears to be slightly more volatile than gas production.
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13 Changing the appearance of a plot

This tutorial can not go into details about the appearance of plots in R. But I briefly want
to show how to add a title and how to change the labeling of the x- and y-axis, so here is a
modified plot of the electricity production. The code below also adds a theme, it changes the
design of the graphic.
electricity_fc %>%
autoplot (australian_production) +

labs(title = "Electricity production in Australia",x = "Quarter", y =
Electricity (gigawatt hours)" )+ theme_bw()

Electricity production in Australia
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Finally, you can export plots with the following code:

ggsave (’my_plot.png’) # This saves the plot under the name ’my_plot’,
you can give it any name you want.

## Saving 6.5 x 4.5 in image

This command always saves the last plot you created. pdf, jpg and a few other formats are also
available, change the ending of the plot name depending on which one you want - ‘my_plot.jpg’
would save the plot as jpg and so on.

14 Sources

This tutorial is based on the third edition of ‘Forecasting: Principles and Practice’. The book is
available online: https://otexts.com/fpp3/ It is written by the authors of the fable package
that we used for forecasting here, and goes into much more detail than this tutorial could cover.
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